

Laboratory Name and Location: Metrology and Mechanical Measurement (Room No 215)

Lab In-charge: Mr. Milind D. Gayakwad (Asst. Professor)

Lab Area: 76 sqM

Total Investment (INR): Rs. 20,27282/-

List of Major Equipments:

Sr. No.	Name & Specifications of the Equipment	Photograph of the Equipment
1.	Floating Carriage Diameter Measuring <u>Machine</u> Technical Specifications Model : Mechanical Resolution: 0.0002mm Capacity: 0-100mm Length between centers:215mm	

2.	Autocollimeter with Angle Dekkor for Measurement of precision angles and flatness of surface. Objective focal length 300 mm • Magnification 10 X • Reticule scale with 1 minute LC. • Micrometer with 10 second LC. • With 180 X 250 mm harden & ground base plate. • Precision reflector mounted on stand • Optical square prism • Three angle gauges	
3.	Monochromatic light Source with specimen set and optical flat for recognizing type of machined surface 1. Light source : 35 watts sodium vapour lamp 2. Ballast : Copper Ballast for longer life. 3. Unit : Beautifully finished Steel Fabricated box with scratch less powder coating. 4. Diffuser : Milky white acrylic sheet is used to get uniform intensity. SPECIMEN SET FOR DEMONSTRATION. Test pieces - 50mm dia. (useful for demonstration to students of engineering) 1. Optical Flat 2. Concave Surface 3. Convex surface 4. Cylindrical 5. Tourf Formation 6. Steel Master	

4.	Profile Projector. (Model 300T) Magnification :10x lens. Rotary screen diameter 300 mm Screen clamps for checking templates by trace paper.	
5	Angle Gauge Kit (13 pcs) Set consists of 1. Degree Gauges: 6 nos. 41°, 27°, 9°, 9°, 3°, 1° 2. Minutes Gauges: 4 nos. 27', 9', 3' 1' 3. Second Gauges: 3 nos. 30", 18", 6" Material: H.C.H.Cr Hardness: 60 – 62 HRC	

6	 Electronic Comparator A) Electronic Digital Type Display Unit having :-Twin Channel Display System Range/L.C. +/-200 μm/0.0001μm +/-200 μm/0.0005 μm. +/- 2000 μm/0.001 μm. Contact & Non-Contact Gauging RS 232 Output to PC Connectivity Static / Dynamic Reading Model Max, Min, Avg, Tir Metric / Inches Readings Single Tri Colour LED B) Axial Probe ±1 mm. (Make Solartron Uk) : 1No. C) Dial Gauge Stand (1No.) Size : 0-200 mm. Granite Base 	
7.	Dial Calibration Tester Measuring Range: 25mm Resolution: 0.1 μm Electronic Dial Accuracy over range :5 μm Repeatability: 1 μm Resolution :1 μm	

8	Tool Makers Micros Magnification: 30x X-Y Table : 150 X 15 Travel : 50 mm X 50 Micrometer : 0.25 mr Light Source : Diasco 360 ' Graduated ring vernier Filter : Green View Field : 6 mm Electronic regulator t intensity.	50 mm mm n L.C. 0.01 mm opic & Epidiascpic with 6 minutes o control light	
9	Slip Gauge Block M88 steel Grade 1 Nominal Value in mr of pieces 1.0005 1.001 to 1.009 1.01 to 1.49 0.5 to 9.5 10 to 100	n Steps mm No. 1 0.001 9 0.01 49 0.50 19 10 10	DHM-RBI PCS-13 GAUGE BLOCKS Ct P TOT A rest 05 1 109 10 10 110 111 112 113 144 145 166 100 110 111 112 113 134 135 135 137 1,16 1.14 1.02 1.03 1.44 1.25 1.26 1.27 1.28 1.29 1.31 1.32 1.33 1.34 1.35 1.35 1.35 1.35 1.35 1.34 1.35

Laboratory: Metrology and Mechanical Measurement

Significance of the course: This course demonstrates use of precision and non precision measuring instruments for the measurement of linear and angular measurement also introduce use of control charts for the study of process capability.

List of Experiment	CO	
Experiment No.01: Determination of linear and angular dimensions of given composite part	CO1,	
using precision/non precision measuring instruments.	CO2,	
Aim and Objective: Determination of linear and angular dimensions of given composite part		
using vernier callpier, micrometer and vernier height gauge.		
Outcomes: students will be able to demonstrate methodology of using measuring		
instruments for the purpose linear and angular measurement		
Experimentation: Measuring the dimensions and Calculating average dimensions.		
Result: Student will measure linear and angular dimensions of a given components		
Experiment No.02: Error determination with linear / angular measuring instruments	CO1,	
Aim and Objective: To compare the results obtained and find the errors in measuring	CO2,	
instrument like vernier calliper, vernier height gauge, bevel protractor.	CO3,	
Outcomes: Student will be able to do selection of measuring instruments on the basis of		
required precision.		
Experimentation: Measuring the given dimension with the help of vernier calliper and then		
compare result with precision measuring instruments to find error in the instruments.		
Result & Discussion: To find out error in the instruments by comparing.		
Experiment No.03: Calibration of measuring instrument. Example – Dial gauge,	CO1,	
Micrometer, Vernier (any one)	CO2,	
Aim and Objective: Calibration of dial gauge.		
Outcomes: students will be able to demonstrate the procedure of calibration of dial gauge.		
Experimentation: Carrying out the process of calibration of dial gauge.		
Result & Discussion: Students will be to study calibration process of dial gauge.		
Experiment No.04: Verification of dimensions & geometry of given components using	CO1,	
Mechanical & Pneumatic comparator.		
Aim and Objective: To measure the dimensions and compare the dimensions using		
mechanical comparator.		
Outcomes: Student will be able to demonstrate use of comparator.		
Experimentation: Measuring dimensions with non precision instruments and measure the		
same dimensions using mechanical comparator and compare the results.		

Result & Discussion: Students will be able to know difference between measurements using		
instrument and comparator.		
Experiment No.05: Machine tool alignment testing on any two machines.		
Aim and Objective: Machine tool alignment test on lathe and drilling machine		
Outcomes: students will be able to demonstrate the process of machine tool alignment for	CO3,	
lathe and drilling machine.		
Experimentation: students have to carry flatness checking of lathe and drilling machine bed		
and spindle alignment test for lathe and drilling machine		
Result & Discussion: Methods of alignment] and flatness checking is studied and measured.		
Experiment No.06: Identification of surfaces using optical flat/interferometers and measure	CO1,	
surface roughness using surface roughness tester.	CO2,	
Aim and Objective: Study of different surfaces using optical flat.	CO3,	
Outcomes: Students will be able to recognize the type of machined surface using optical		
flats.		
Experimentation: Students will be using optical flat and monochromatic light source to get		
the interference pattern and decide type of pattern on the basis of pattern.		
Result & Discussion: students will be able to identify the type of surface on the basis of		
interference pattern observed.		
Experiment No.07: Determination of geometry & dimensions of given composite object	CO1,	
using profile projector and measurement of various angles of single point cutting tool using		
tool maker's microscope.		
Aim and Objective: To measure single point cutting tool angles using tool makers		
microscope		
Outcomes: Students will be able to demonstrate the use of tool maker's microscope for		
measurement of angles.		
Experimentation: single point cutting tool is observed under tool makers microscope and		
angular measurements are carried out.		
Result & Discussion: different tool angles will be measured and its values are found.		
Experiment No.08: Measurement of thread parameters using floating carriage diameter	CO1,	
measuring machine.	CO2,	
Aim and Objective: To study measurements of screw thread parameters using floating	CO3,	
carriage micrometer.		
Outcomes: To demonstrate the use of two wire method principle for measurement of		
effective diameter of thread.		
Experimentation: Carryout the measurements of outside diameter, effective diameter and		
root diameter of thread using floating carriage machine.		
Result & Discussion: The measured values of screw thread diameters will be measured.		

Experiment No.09: Measurement of spur gear parameters using Gear Tooth Vernier, Span,		
Gear Rolling Tester		
Aim and Objective: To measure the tooth thickness and depth of spur gear tooth using gear		
tooth vernier calliper.		
Outcomes: students will be able to demonstrate use of gear tooth vernier callpier for the		
measurement of gear tooth parameters.		
Experimentation: Measurement of gear tooth thickness and depth of tooth using gear tooth		
vernier calliper is carried out.		
Result & Discussion: the measured values of gear tooth thickness and depth are stated.		
Experiment No.10: Determination of process capability from given components and plot		
variable control chart/ attribute chart.	CO2,	
Aim and Objective: Study of process capability of machine from given statistical data		
Outcomes: To decide about process capability on the basis of control charts.		
Experimentation: calculate mean, mode, standard deviation and then plotting the control		
charts like X bar and R bar.		
Result & Discussion: The process capability will be decided on the basis of control charts		
observations.		